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1 Automorphisms, Lagrange’s Theorem, Isomorphism The-
orems, and Semidirect Products

1.1 Automorphisms and Lagrange’s theorem

Last time, we had γ : G → Inn(G) given by g 7→ γg, where γg(x) = gxg−1. Then
ker(γ) = Z(G), so G/Z(G) ∼= Inn(G).

Theorem 1.1 (Lagrange). Let H ≤ G, where H and G are finite, then |G| = [G : H]|H|.
Also, if K ≤ H ≤ G, then [G : K] = [G : H][H : K].

Proof. G =
∐
gH, where the g are a set of coset representatives. Then, since H → gH

given by h 7→ gh is a bijection, G = (# left cosets)|H| = [G : H]|H|.

Definition 1.1. The order of g ∈ G is the smallest n ≥ 1 such that gn = e. The
exponent of G is the smallest n such that gn = e for all g ∈ G.

Example 1.1. Aut(Dn) ∼= Aff(Z/nZ) ≤ GL2(Z/nZ), where

Aff(Z/nZ) =

{[
a b
0 1

]
: a ∈ (Z/nZ)×, b ∈ Z/nZ

}
.

The map is

[
a b
0 1

]
7→ φa,b, where φa,b(r) = ra and φa,b(s) = rbs. Let’s check that this is

an isomorphism.
First, we check that we can use the presentation Dn =

〈
r, s | r2, s2, rsrs

〉
. Let Φ :

F{r,s} → Dn be a homomorphism such that Φ(f) = ra and Φ(s) = rbs.

F{r,s} Dn

Dn

φa,b
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Then we can check that this agrees.

Φ(rn) = ran = e

Φ(s2) = rbsrbs = rbr−b = e

Φ(rsrs) = ra+bsra+bs = e

As an exercise, check that this map is injective.

In this example, 〈r〉 was a characteristic subgroup.

Definition 1.2. A subgroup is characteristic if it is preserved by all automorphisms
(ϕ(N) ≤ N for all ϕ).

Remark 1.1. Even if K E N and N E G, we cannot conclude that K E G. However,if
K ≤ N is characteristic and N ≤ G is characteristic, then K ≤ G is characteristic.

Lemma 1.1. Let G be a group.

1. Z(G) is characteristic in G.

2. G′ = [G,G] = 〈[x, y] | x, y ∈ G〉 is characteristic in G.

Proof. Let’s prove the second statement. If φ is an automorphism, ϕ([x, y]) = [ϕ(x), ϕ(y)] ∈
G′.

1.2 The second and third isomorphism theorems

For H,K ≤ G, let HK = {hk : h ∈ H, k ∈ K}. This may not be a subgroup of G. When
is it a subgroup?

Lemma 1.2. HK ≤ G if and only if HK = KH.

Proof. If KH ⊆ HK, then kh ∈ HK for all k ∈ K,h ∈ K. So KH ⊆ HK. This means
that for k ∈ K,h ∈ H, there exists h′ ∈ H and k′ ∈ K such that kh = h′k′. So then
h1k1 · · ·hrkr = hk for some h ∈ H and k ∈ K by moving all the ks to the right. So
HK ≤ G.

Now observe that (h−1k−1) = (kh)−1 ∈ HK. So if HK is group, then HK = KH.

Theorem 1.2 (2nd isomorphism theorem). Let K E G and H ≤ G. Then HK/K ∼=
H/(H ∩K).

Proof. Let ϕ : H → HK/K be ϕ(h) = hK. This is surjective, and ker(ϕ) = H ∩K. Now
apply the first isomorphism theorem.

Theorem 1.3 (3rd isomorphism theorem). Let K E G, H E G, and K ≤ H. Then
G/H ∼= (G/K)/(H/K).

Proof. Let π(gK) = gH. This is a surjective homomorphism. Then ker(π) = {gK : gH =
H} = H/K ≤ G/K. Then use the 1st isomorphism theorem.
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1.3 Semidirect products

Let H,N be groups with a homomorphism H → Aut(N).

Definition 1.3. The (external) semidirect product of N and H is N oϕH = N ×H
with the group operation

(n, h)(n′, h′) = (nϕ(h)(n′), hh′).

Let’s check that this is a group:

1. The identity is (e, e).

2. Inverses are given by (n, h)−1 = (φ(h−1)(n−1), h−1).

3. Associativity is left as an exercise.

How does conjugation work in the semidirect product? We can identify N ≤ N oϕ H
and H ≤ N oϕ H by n 7→ (n, e) and h 7→ (e, h). Then NH = N oϕ H. Then

hnh−1 = (e, h)(n, e)(e, h−1) = (φ(h)(n), h)(e, h−1) = (φ(h)(n), e)

Example 1.2. Aff(Z/nZ) ∼= Z/nZ oϕ (Z/nZ)×. The isomorphism is

[
a b
0 1

]
7→ (b, a).

Here, ϕ(a)(b) = ab.

Example 1.3. Dn
∼= Z/nZ oϕ Z/2Z, where ϕ(1)(a) = −a.

Definition 1.4. Let N E G and H ≤ G be such that N ∩H = {e} and NH = G. Then
G is the internal semidirect product N oH of N and H.

Really, these are the same thing. G = N oH ∼= N oϕ H, where ϕ(h)(n) = hnh−1.
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